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Recent experiments found that some adhesive receptor-ligand complexes have counterintuitive catch-slip
transition behaviors: the mean lifetimes of these complexes first increase �catch� with initial application of a
small external force, and then decrease �slip� when the force is beyond some threshold. In this work we suggest
that the forced dissociation of these complexes might be a typical rate process with dynamic disorder. The
one-dimensional force modulating Agmon-Hopfield model is used to describe the transitions in the single-bond
P-selectin glycoprotein ligand 1-P-selectin forced dissociation experiments, which were respectively performed
in the constant force �Marshall et al., Nature �Landon� 423, 190 �2003�� and the ramping force �Evans et al.,
Proc. Natl. Acad. Sci. U.S.A 98, 11281 �2004�� modes. We find that, an external force can not only accelerate
the bond dissociation, but also modulate the complex from the lower-energy barrier to the higher one; the
catch-slip bond transition can arise from a particular energy barrier shape. The agreement between our calcu-
lation and the experimental data is satisfactory.
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I. INTRODUCTION

Adhesive receptor-ligand complexes with unique kinetic
and mechanical properties play key roles in cell aggregation,
adhesion and other life functions in cells. A well-studied ex-
ample is the receptors in the selectin family, which comprises
E-, L-, and P-selectin, interacting and forming “bonds” with
their ligands. These bonds are primarily responsible for the
tethering and rolling of leukocytes on inflamed endothelium
under shear stress �1,2�. Recently, great experimental effort
�3–7� has been devoted to studying the intriguing kinetic and
mechanical behaviors of the bonds between L- and P-selectin
and P-selectin glycoprotein ligand 1 �PSGL-1� at the single-
molecule level: the lifetimes of these bonds first increase
with initial application of a small force, �“catch” bonds� and
subsequently decrease �“slip” bonds� when the force in-
creases beyond some threshold. The biological relevance of
this discovery is that the catch-slip transitions of the PSGL-
1–L- and P-selectin bonds may provide direct experimental
evidence at the single-molecule level to account for the shear
threshold effect �8,9�, in which the number of rolling leuko-
cytes on the vascular wall first increases and then decreases
while monotonically increasing shear stress.

On the theoretical side, Bell �10� first suggested that the
forced dissociation rate of adhesive receptor-ligand com-
plexes could be described by

koff�f� = koff
0 exp�f ��

‡/kBT� , �1�

where

koff
0 = k0 exp�− �G‡/kBT� �2�

is the intrinsic dissociation rate in the absence of force, �G‡

is the height of the intrinsic energy barrier, �‡ is the distance

from the bound state to the energy barrier, f � is a projection
of the external applied force f onto the dissociation coordi-
nate and is thought to be positive, kB is Boltzmann’s con-
stant, and T is absolute temperature. The validity of the ex-
pression was supported in various experiments �11,12�. The
Bell expression cannot explain catch bonds because force in
this model only lowers the height of the energy barrier and
shortens the bond lifetimes. In the past two years three
chemical kinetic models were developed to quantitatively
understand the intriguing catch-slip bond transitions. Evans
et al. presented a two-pathway and two-bound-state model
with assumption of rapid equilibrium between the two states.
They suggested that the catch-slip bond transitions take place
due to the applied force switching the pathway with faster
dissociation rate to the other with a slower one �4�. The next
model given by Barsegov and Thirumalai �13� has almost the
same kinetic scheme except that the applied force acts on the
two dissociation pathways simultaneously. Very recently, a
competitive two-pathway and one-bound-state model was
proposed by Thomas et al. �14�. This model is distinct from
the others because there is a catch pathway therein, which
was thought to have a negative force projection on the dis-
sociation coordinate �15�.

Although these discrete chemical kinetic models explain
the catch-slip bond transition and fit the experimental data
well, we are still interested in this issue because we recently
found that an alternative mechanism, i.e., a stronger positive
correlation between the fluctuating intrinsic energy barrier
�G‡ and the distance �‡ �16�, can also induce the transition.
The assumption of our work was that the energy barrier and
distance in Eq. �1� are fluctuating with time due to either
global conformational changes or local conformational
changes at the interfaces. This is plausible because the inter-
face between PSGL-1 and L- or P-selectin is very broad and
shallow �17�. We know that chemical reactions with fluctu-
ating energy barrier have usually been called rate processes
with dynamic disorder �18�; our model therefore could be*Email address: liufei@tsinghua.edu.cn
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viewed as a natural extension of this concept to the forced
dissociation cases. Even so, this model is not satisfactory
quantitatively. Our model predicted the mean lifetime of the
PSGL–P-selectin bond to be symmetric relative to the tran-
sition force f t, whereas the data �3� were clearly skewed
toward a large force. Also, this model did not fit the two
experiments performed, respectively, in the constant �3� and
ramping force �4� modes with the same set of parameters.

To overcome these shortages, in the present work we sug-
gest a different model to re-explain the catch-slip bond tran-
sition. As a continuance of our previous work, we still de-
scribe the forced dissociation of the PSGL-1–L- or P-selectin
complex as a rate process with dynamic disorder. The addi-
tional assumption and key point in this model is that the
external force can act on the inner conformational coordinate
of the complex simultaneously, while the coordinate is a
“hidden” variable in the experiment. Therefore, the force not
only lowers the height of the energy barrier as described in
Eq. �1� but also modulates the distribution of the coordinate.
If the force stabilizes the complex by dragging the system to
the states with higher-energy barrier, and this effect is larger
than the forced dissociation reaction, the complex presents a
catch behavior to the force; otherwise a slip bond is ob-
served. The catch-slip bond transition can be induced at a
particular energy barrier with respect to the conformational
coordinate. Our calculation agrees with the experimental
data well.

The organization of the paper is as follows. In the next
section, we describe the physical assumption of the force
modulating diffusion-reaction equation and present the es-
sential mathematic derivations. In Sec. III, we study three
mean lifetimes for three kinds of energy barrier function with
respect to the conformational coordinate: the linear, har-
monic, and piecewise functions with two segments. In par-
ticular, the last one is used to fit the experimental data. Fi-
nally we present the conclusion.

II. THEORY AND METHODS

The physical assumption of our model is very similar to
that of a small ligand binding to heme proteins �19�: there is
an energy surface for complex dissociation that depends on
both the reaction coordinate for the dissociation and the con-
formational coordinate x, and the latter is perpendicular to
the former; for each conformation x there is a different dis-
sociation rate constant obeying the Bell expression; the dis-
tribution of x could be modulated by a component of the
external force along the x direction; higher temperature or
larger diffusivity �low viscosities� allows x variation within
the complex to take place, which results in a variation of the
energy barrier of the bond with time.

A. The constant force mode

There are two types of experimental setups to measure the
forced dissociation of receptor-ligand complexes. We first
consider the constant force mode �3,5�. The diffusion equa-
tion in the presence of a coordinate-dependent reaction is
given by �19�

�p�x,t�
�t

= D
�2p

�x2 +
D

kBT

�

�x
�p

�Vf�

�x
� − koff�x, f ��p , �3�

where p�x , t� is the probability density for finding a value x
at time t and the density at initial time is thought to be the
thermal equilibrium with the potential Vf�

, D is the diffusion
coefficient, f� and f � are the projections of the external force
f on the directions of the reaction and conformational coor-
dinates,

f� = f sin � ,

f � = f cos � � 0, �4�

and � is the angle between f and the reaction coordinate.
Equation �3� assumes that the dissociation process is under
the influence of a coordinate-dependent Bell rate koff�x , f ��
and a force modulating potential

Vf�
�x� = Vi�x� − f�x , �5�

where Vi�x� is the intrinsic potential in the absence of force.
Instead of studying general potentials, in the present work
we focus on the harmonic potential

Vi�x� = V0 + ��x − x0�2/2 �6�

with a spring constant �. We divide Vf�
�x� into two parts,

i.e.,

Vf�
�x� = V�x − x0 −

f�

�
� + W�f��

=
�

2
�x − x0 −

f�

�
�2

+ V0 − f�x0 −
f�

2

2�
. �7�

Defining a new coordinate variable

y = x − x0 − f�/� , �8�

we can reexpress Eq. �3� in the y coordinate as

���y,t�
�t

= D
�2�

�y2 +
D

kBT

�

�y
��

�V�y�
�y

� − kf�y�� �9�

where kf�y�=koff�y+x0+ f� /� , f ��. Compared to the original
work by Agmon and Hopfield �19�, our problem for the con-
stant force case is almost the same except the reaction rate
now is controlled by an external force. All results obtained
by them can be inherited with minor modifications. Here we
present only the essential definitions and calculations.

Substituting

��y,t� = N0 exp�−
V�y�
2kBT

���y,t� �10�

into Eq. �9�, we convert the diffusion-reaction equation into
the Schrödinger-like presentation �20�

��

�t
= D

�2�

�y2 − Uf�y�� = − H f��� , �11�

where N0 is the normalization constant of the density func-
tion ��y , t� at t=0, and the “effective” potential
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Uf�y� = U�y� + kf�y� =
D

2kBT
� 1

2kBT
�dV

dy
�2

−
d2V

dy2 	 + kf�y� .

�12�

We define U�y� to be independent of the force f in the y
coordinate. Equation �11� can be solved by the eigenvalue
technique �19�. At the large D of interest here, only the
smallest eigenvalue �0�f� contributes to the eigenvalue ex-
pansion. It is impossible to analytically get �0�f� for kf�y�,
which we study below. The perturbation approach �21� has to
be applied. If the eigenfunctions and eigenvalues of the “un-
perturbed” Schrödinger operator

H = − D
�2

�y2 + U�y� �13�

in the absence of kf�y� are known,

Hun = − 	nun, �14�

the first eigenfunction �0�f� and eigenvalue �0�f� of the op-
erator H f then are respectively given by

�0�f� = u0 + 

m�0

� u0�y�kf�y�um�y�dy

	0 − 	m
um + ¯ �15�

and

�0�f� = �0
�0��f� + �0

�1��f� + �0
�2��f� + ¯ = 	0

+� u0�y�kf�y�u0�y�dy

+ 

m�0

�� u0�y�kf�y�um�y�dy	2

	0 − 	m
+ ¯ . �16�

Considering that the system is in thermal equilibrium at the
initial time, the first eigenvalue 	0 must vanish. On the other
hand, because

u0�y� 
 exp�− V�y�/2kBT� , �17�

and the square of u0�y� is just the equilibrium Boltzmann
distribution peq�y� with the potential V�y�, we rewrite the
first correction to �0�f� as

�0
�1��f� =� peq�y�kf�y�dy . �18�

Substituting the above formulas into Eq. �10�, the probability
density function then is approximated by

��y,t� � N0 exp�−
V

2kBT
�exp�− �0�f�t��0�f� . �19�

The quantity measured in the constant force dissociation
experiments is the mean lifetime of a bond, ��,

�� = − �
0

�

t
dQ

dt
dt = �

0

�

Q�t�dt , �20�

where the survival probability Q�t� related to the probability
density function is given by

Q�t� =� p�x,t�dx =� ��y,t�dy . �21�

B. The dynamic force mode

In addition to the constant force mode, the force may be
time dependent, e.g., the linear ramping force in a biomem-
brane force probe �BFP� experiment �4�. We still use Eq. �3�
to describe the bond dissociation processes induced by a dy-
namic force. In order to distinguish this from the constant
force mode, we denote the two components of the time-
dependent force as f t�

and f t�
. We still follow Eq. �8� and

rewrite Eq. �3� in the coordinate y as

���y,t�
�t

= D
�2�

�y2 +
D

kBT

�

�y
��

�

�y
V�y +

kBT

D�2

dft�

dt
�	 − kft

�y�� ,

�22�

where kft
�y�=koff�y+x0+ f t�

/� , f t�
�, and we have used the

property of the harmonic potential. The reader is reminded
that the initial density function p�x ,0� now is in thermal
equilibrium with the intrinsic potential Vi�x� because no
force is added at t=0. Compared to Eq. �9�, the time-
dependent term in the parentheses is a consequence of the
time-dependent force. It also means that the minimum of the
harmonic potential is moving with a velocity proportional to
d2f� /dt2 in the y- “reference frame.” Specially, when the
dynamic force is ramping, i.e., f�t�= f0+rt, where r is a con-
stant loading rate, and the zero or nonzero of f0, respectively,
corresponds to the steady or jump force mode �4�, this ve-
locity vanishes. It is impossible to analytically solve this
diffusion-reaction equation with a time-dependent potential
and reaction term; some reasonable approximations would be
essential. We assume that the force loading process is very
slow compared to the conformational diffusion along the y
direction, i.e., rkBT /D�21. The above equation then re-
duces to Eq. �9� except that the force in the reaction term is
no longer a constant. We also convert the approximated
diffusion-reaction equation to a Schrödinger-like representa-
tion, and get the same Eqs. �11� and �12� except that the
forces therein are replaced by function f t. Because in this
case the effective potential has a time variable, we make use
of an adiabatic approximation analogous to what is done in
quantum mechanics. The correction of this assumption
would be verified by the agreement between theoretical cal-
culation and experimental data. We immediately have

��y,t� � exp�− �
0

t

��0�f t�� + B�f t���dt���0�f t� , �23�

where the “Berry phase” �21�
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B�f t� =� �0�f t�
�

�t
�0�f t�dy , �24�

and �0�f t� is the first eigenfunction of the time-dependent
Schrödinger operator

H f t
= H + kft

�y� . �25�

Because the eigenvalues and eigenfunctions of the above op-
erator cannot be solved analytically for general kft

, we apply
the perturbation approach again. We obtain �0�f t� and �0�f t�
by replacing kf in Eqs. �15� and �16� with kft

. The Berry
phase then is approximated by

B�f t� � 

m�0

� 1

	m
�2� u0�y�kft

�y�um�y�dy

�� u0�y�
dkft

dt
um�y�dy . �26�

Finally, the survival probability for the dynamic force is

Q�t� � exp�− �
0

t

��0�f t�� + B�f t���dt�� . �27�

Unlike the constant force mode, the data of the dynamic
force experiments are typically presented in terms of a force
histogram, which corresponds to the probability density of
the dissociation forces,

P�f� = −
dQ

dt � df

dt
. �28�

For the ramping force case we have

P�f , f0� �
1

r
��0�f� + B�f��exp�−

1

r
�

f0

f

��0�f�� + B�f���df�� .

�29�

III. RESULTS

Given a bounded diffusion in the harmonic potential Eq.
�6�, H reduces to a harmonic oscillator operator with

U�y� =
D�

2kBT
� �y2

2kBT
− 1� . �30�

Its eigenvalues and eigenfunctions are

	n = nD�/kBT �31�

and

un�z� = 2−n/2�−1/4�n!�−1/2e−z2/2Hn�z� , �32�

respectively, where z= �� /2kBT�1/2y and Hn�z� is the Hermite
polynormial �21�. As a minimal model, we assume that the
Bell expression depends on the conformational coordinate
through the intrinsic height of the energy barrier �G‡ in Eq.
�2� while holding the distance �‡ fixed. According to the
shape of the barrier with respect to the conformational coor-

dinate, we analyze three cases: the linear, harmonic, and
piecewise functions.

A. Bell-like forced dissociations

The simplest function of the energy barrier might be lin-
ear �19�,

�G‡�x� = �G0
‡ + kg�x − x0� . �33�

According to Eqs. �16� and �26�, we easily get

�0
�1��f� = k0 exp�− ��G0

‡ +
�kg

2

2�
�exp����‡f � −

kg

�
f��	 ,

�0
�2��f� =

− k0
2

�D�
exp�− 2��G0

‡ +
�kg

2

�
�

� exp�2���‡f � −
kg

�
f��	


n=1

�
1

nn!
��kg

2

�
�n

,

�34�

and

B�f t� =
d

dt
��‡f t� −

kg

�
f t�� k0

2

�D2�2 exp�− 2��G0
‡ +

�kg
2

�
�

� exp�2���‡f t� −
kg

�
f t��	


n=1

�
1

n2n!
��kg

2

�
�n

, �35�

where �=1/kBT. For large D or � �or very small T�, the
second correction and the Berry phase tend to zero. Under
these limitations the first eigenvalue of Eq. �3� is approxi-
mated to be

�0�f� � k0 exp�− ��G0
‡ +

�kg
2

2�
�exp��d‡f� . �36�

Here we define a new distance

d‡ = �‡ cos � − � sin � , �37�

where �=kg /�. We see that the presence of the complex con-
formational coordinate can modify the original Bell model:
�i� for d‡�0, Eq. �36� is indistinguishable from the original
Bell model; �ii� for d‡=0, the force does not affect dissocia-
tions of the bonds, which were termed “ideal” bonds by
Dembo �15�; �iii� for d‡�0, the force slows down dissocia-
tion of the bonds, or a catch bond is observed. This reflects a
competition between the two contrasting effects of the same
force for kg�0: increase of the force not only destabilizes
the molecular complex by lowering the energy barriers �slip�,
but also stabilizes the bond by dragging the system to the
states with higher-energy barrier �catch� simultaneously; if
the effect of the latter is larger than that of the former, a catch
bond results.

B. Dembo-like forced dissociations

A relatively complicated function of the energy barrier is
a harmonic with a spring constant �g,
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�G‡�x� = �G1
‡ + �g�x − x1�2/2, �38�

where �G1
‡ is the barrier height at position x1. Because, for

any form of the barrier height, the dependence of �0
�2��f� and

B�f t� on D is the same according Eq. �31�, we only consider
the large-D limitation in the following part. We have

�0�f� � k0� �

� + �g
�1/2

exp�− ��G1
‡ + ��‡f ��

� exp�−
��g�f� − ��x1 − x0��2

2��� + �g� � . �39�

We also define the distance

D‡ = �‡ cos � + 2�g�x1 − x0�sin �/�� + �g� . �40�

Given D‡�0, there is a transition from slip to catch when
the force increases over a threshold

D‡��� + �g�/2�g sin2 �; �41�

otherwise only a catch bond results. We note that the latter is
very similar to the Hookean spring model proposed by
Dembo �15� even though their physical origins are com-
pletely different: both of them are exponentially dependent
on the force square.

C. Comparison with the experiments

1. The constant force mode

In the constant force dissociation experiment of the
PSGL-1–P-selectin complex, the dissociation rate first de-
creased and then increased when force increased beyond a
threshold �3�. We can now understand this transition accord-
ing to the discussion about the Bell-like dissociation rate: the
dissociation effect of f � regains its dominance when the force
is beyond the threshold. Although there are lots of barrier
shapes that can result in a catch-slip transition, the simplest
case may be a piecewise function with two segments

�G‡�x� = ��Gc
‡�x� = �Gb

‡ + kc�x − xb� , x � xb,

�Gs
‡�x� = �Gb

‡ + ks�x − xb� , x � xb,
� �42�

where we require that the distances defined by Eq. �37� with
kc and ks are, respectively, negative and positive. For conve-
nience, the absolute values of the distances are denoted by dc

‡

and ds
‡. Define two “intrinsic” dissociation constants

k0
c = k0 exp�− ��Gc

‡�x0�� ,

k0
s = k0 exp�− ��Gs

‡�x0�� . �43�

Figure 1 shows the characteristics of the function. We then
have

�0�f� �
k0

c

2
exp��kc

2

2�
�exp�− �dc

‡f�erfc�− �� +
kc

�
����

2

+ f� �

2�
sin �	 +

k0
s

2
exp��ks

2

2�
�exp��ds

‡f�

�erfc��� +
ks

�
����

2
− f� �

2�
sin �	 , �44�

where �=xb−x0, and the complementary error function is

erfc�x� =
2

��
�

x

�

e−x2
dx . �45�

Before fixing the parameters in Eq. �44�, we first analyze the
main properties of �0�f� given ��0: �i� in the absence of
force, due to erfc�−��=2 and erfc�+��=0, we have

�0 = k0
c exp��kc

2/2�� , �46�

which is the same as that obtained by Agmon and Hopfield
�19�; �ii� if the force is nonzero and smaller,

�0 � k0
c exp��kc

2/2��exp�− �dc
‡f� , �47�

which means that the bond is a catch bond; and finally �iii�,
when the force is sufficiently large, Eq. �44� reduces to

�0 � k0
s exp��ks

2/2��exp��ds
‡f� , �48�

which is the ordinary slip bond.
There are in total eight independent parameters in Eq.

�44�: �, �, kc, ks, �, �‡, k0, and �Gc
‡�x0�. Through fitting the

existing data �3�, we can only determine some combinations
of them, e.g., k0

c, ds
‡, etc. But if we artificially assume the

slope ks=0 �the bold solid line in Fig. 1� and �=� /6, we
immediately have ��0.21 pN nm−1, kc�0.60 pN, �
�33 nm, �‡�0.25 nm, k0

c �23 s−1, and k0
s �1.7 s−1. Here

the particular angle and ks are actually of no particular sig-
nificance and we use them only as a reference. We note that
� is larger than the size of the native complex ��10 nm�. A
possible explanation is that a large sliding or conformational
extension occurs along the interface of PSGL-1 and
P-selectin before the complex is completely dissociated. Be-
cause � exists only in the piecewise function case, and its
value depends on the choice of � and ks, overinterpretation of
its meaning is not suitable. Substituting these values into Eq.
�44�, we calculate the mean lifetime of the PSGL-1–P-
selectin complex at different constant forces in Fig. 2; the
agreement between theory and the experimental data is good.

FIG. 1. Schematic diagram of the height function of the energy
barrier with respect to the coordinate x �the solid lines�. �Gs

‡ and
�Gc

‡ are the values of the linear functions in Eq. �42� at position x0,
while �Gb

‡ is the intersection of the functions at xb.
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2. The ramping force mode

More challenging experiments for the model are the force
steady and jump ramp modes �4�. Under the large-D limita-
tion, Eq. �29� reduces to

P�f , f0� �
�0�f�

r
exp�−

1

r
�

f0

f

�0�f��df�� . �49�

We see that the mean lifetime can be extracted from the
above equation by setting f = f0, i.e., ��=1/rP�f0 , f0�. We
first study the general properties of the above equation. The
experimental data �4� showed that the force histograms reach
the maximum and minimum at two distinct forces, which are
named fmin and fmax, respectively. This observation is under-
stood by setting the derivative of the density function P�f , f0�
with respect to f equal to zero, i.e.,

r
d�0

df
�f� = �0

2�f� . �50�

Because the left side of the equation is negative for a catch
bond, fmin and fmax must be larger than the transition force f t
observed in the constant force mode. On the other hand, Eq.
�50� has no solutions when the loading rate is smaller than a
critical rate rc, which is obtained by simultaneously solving
Eq. �50� and its first derivative. Applying the parameters ob-
tained from constant force data, we estimate rc�6 pN/s, and
fmax= fmin�13 pN. Because the density function is a mono-
tonic and decreasing function for r�rc, the most probable
force of bond dissociation is zero. Another quantity of inter-
est is the loading rate dependence of the forces of the maxi-
mum and minimum. The latter is an important index in dy-
namic force spectroscopy theory �22�. When the loading rate
is sufficiently large, the approximation of Eq. �47� implies

fmax �
1

�ds
‡ ln

�rds
‡

k0
s exp��ks

2/2��

 ln r . �51�

The experimental measurement supports this conclusion; see
Fig. 3A in Ref. �4�. For fmin, because it is very close to f t at
the larger loading rate, we employ the Taylor expansion ap-
proach and have

�0�f� = �0�f t� +
1

2

d2�0

df2 �f t���f�2 + o���f�3� , �52�

where �f = f − f t. Substituting it into Eq. �50�, we obtain

fmin � f t + �0
2�f t�� r

d2�0

df2 �f t� 
 r−1, �53�

or fmin� f t at the large loading rate. It also explains why the
forces of the minima in the experiment are always around a
certain value and seem to be independent of the loading rate
�see Figs. 2 and 4 in Ref. �4��. We must emphasize that this
prediction is intrinsically characteristic of a catch-slip bond.

When we quantitatively compare the prediction with the
real experimental observation, we find that f t measured by
Marshall et al. �3� is apparently different from fmin measured
by Evans et al. �4�; the latter is almost twice as large as the
former. Hence it is not unexpected that Eq. �49� based on the
parameters from the constant force data cannot fit the dy-
namic force data. A similar problem was met by Pereverzev
et al. �14�. They simply contributed it to the different equip-
ment and biological constructs. They used another set of pa-
rameters to fit the dynamic force data. The reader is re-
minded that the two experiments were performed on the
same single-bond sPSGL-1–P-selectin complex by the same
experimental group. Here we will use the same parameters
for the two experiments. But we additionally assume that the
BFP experiment performed by Evans et al. is for a dimeric-
bond sPSGL-1–P-selectin complex: the two independent
bonds share the same force and fail randomly. Our consider-
ation is as follows. First, fitting data is not the single aim of
a model; complete agreement with the data cannot justify a
model. Then we demonstrate that for the forced dissociation
of single bond, f t should be almost the same as fmin, while
the data showed fmin�2f t. This discrepancy between theory
and experiment is easily reconciled if the dimeric-bond as-
sumption was accepted. Finally our calculation fit the dy-
namic force data well under this assumption; see Fig. 3,
where the probability density of the dissociation force for the
dimeric-bond PSGL-1–P-selectin complex is related to the
single bond by

Pd�f , f0� = P�f/2, f0/2�2. �54�

Of course, a further experimental test is needed.

IV. DISCUSSION AND CONCLUSIONS

In this work, we present a dynamic model for the catch-
slip bond transitions observed in PSGL-1–P-selectin forced
dissociation experiments. A possible physical mechanism of
the catch bond is suggested here: the applied external force,
although it accelerates the dissociation by lowering the

FIG. 2. �Color online� The mean lifetime as a function of force
for the bonds of dimeric P-selectin with monomeric sPSGL-1
�square symbols� �3� and the rescaled dimeric PSGL-1 �circle sym-
bols� from Ref. �14�. The solid line is the theoretical fitting. The two
dash curves are respectively calculated by the two addition terms in
Eq. �44� with the same parameters. Our curve decays faster than
that fitted by the two-pathway and one-bound-state model �14� after
a transition occurs.
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height of the energy barrier, also stabilizes the complex by
dragging the molecule to the state with a higher barrier
height; if the effect of the latter is greater than the former, a
catch behavior is observed; otherwise a slip bond appears. A
piecewise energy barrier is used to quantitatively describe
the transitions in the constant and ramping force modes. It is
not difficult to “design” a specific complex structure to real-
ize this particular energy surface. Figure 4 shows such a
possible example. The inner conformational coordinate x
now is a degree of freedom along the interface of the com-

plex. If we simply assume that the energy barrier is propor-
tional to the number of interaction sites between the selectin
and PSGL-1, and this number is also proportional to the
overlap area of the two molecules, the barrier then has a
shape �the bold solid line� depicted in Fig. 1. For instance,
the B configuration in the figure corresponds to the bend
position of the energy barrier because the interaction is now
saturated. Interestingly, the parameter � in this case has very
simple structural interpretation: it is the angle between the
interface and the vertical. We believe this picture has some
rationalities. We mentioned that the interface of the complex
is broad and shallow. Sliding between the two molecules
should be very possible under the force f�. Moreover, x-ray
crystallography structure �17� shows that there is an angle
between the epithelial growth factor and lectin �which is re-
sponsible for molecular contact� domains in P-or L-selectin,
which may result in tilting of the interface toward the force
direction and form the angle �.

Our force modulating dynamic disorder model has some
connections with previous discrete chemical kinetic models
�4,13�, where force alters the distribution of the two path-
ways with different dissociation rates. It could be seen by
writing Eq. �3� in a finite-difference form �19�. For conve-
nience, we let the force component f � =0. Defining �x=xi+1

−xi, D̄=D�x2, pi= p�xi , t��x, we have the master equation

�pi

�t
= pi−1k�i�i − 1� + pi+1k�i�i + 1�

− pi�k�i − 1�i� + k�i + 1�i�� − kipi �55�

where

k�i�j� � D̄ exp�−
Vf�

�xi� − Vf�
�xj�

2kBT
� . �56�

In particular, for only two states, one has the chemical ki-
netic equation

dp1

dt
= p2k�1�2� − p1k�2�1� − k1p1,

dp2

dt
= p1k�2�1� − p2k�1�2� − k2p2. �57�

Assuming that the two states are in equilibrium, we easily
obtain

dQ

dt
= −

k1R + k2 exp��f�x�
R + exp��f�x�

Q �58�

where the survival probability Q= p1+ p2, and

R = exp�Vi�x2� − Vi�x1�
kBT

� . �59�

This is just the model proposed by Evans et al. �4�. If f � does
not vanish and �‡ is also a function of the conformational
coordinate, we should also recover the model proposed by
Barsegov and Thirumalai �13�. This discussion also reminds
us that the component f� is not indispensable in explaining
the catch-slip transitions, which can be seen if we assume

FIG. 3. �Color online� The probability density of the dissocia-
tion forces Pd�f , f0� under the different loading rates predicted by
our theory �solid curves� for the PSGL-1–P-selectin complex. The
symbols are from the force steady and jump ramp experimental data
�4�. We see that the tendencies of our density functions for the first
two panels of the second array are closer to the data than that
predicted by the two-pathway models �4,14�. The apparent devia-
tions between the theory and the data in the last column may be
from the failure of the assumption of the two independent bonds at
higher loading rates or the adiabatic approximation.

FIG. 4. Schematic of a possible example having a piecewise
energy barrier with respect to conformational coordinate x �Eq.
�42��. The force f acting on the PSGL-1 �open regime� is to the left.
The interface between selectin �shaded regime� and PSGL-1 makes
an angle � to the vertical. The force then can be broken into two
components, f� and f �, which are, respectively, parallel and perpen-
dicular to the interface. Circles �filled and open� represent the inter-
action sites of the two molecules. The three configurations �A, B,
and C� of the selectin correspond to the three coordinates in Fig. 1.
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that the energy barrier as a function of coordinate x first
increases and then decreases after reaching a maximum. In a
quantitative way, we make �=� /2; then the other parameters
are ��0.84 pN nm−1, kc�1 pN, ks�−0.22 pN, �
�16.5 nm, and k0

c and k0
s are the same as those in the �

=� /3 case. Because f � =0, the distance �‡ is not present.
Such an energy surface will occur if the maximum overlap
area of the selectin and PSGL-1 is almost the same as their
respective contact surfaces.

One may then ask what insight or understanding is ob-
tained by our theory based on the continuum diffusion-
reaction description with eight parameters. After all, the sim-
pler discrete two-pathway models with four �14� and five
parameters �4� explained the data well. The continuum
diffusion-reaction description should be more attractive in
the following aspects. First of all, the two-pathway and two-
bound-state models �4,13� assume the states are separated by
an energy barrier. This assumption seems to be less appro-
priate than the diffusion scheme for describing conforma-
tional dynamics in real proteins �23�. The derivation of Eq.
�55� suggests that the discrete scheme might be a mathemati-
cal approximation of the continuum case. The “smooth” en-
ergy landscape can also lead to the catch-slip bond transi-
tions. Then there are two new physical parameters, the angle
� and diffusion coefficient D in the current model. Although
fitting the existing data does not benefit from the two param-
eters, they might be important to explain other phenomena in
which force is involved. For instance, the angle � may be
relevant to the orientational dependence of the adhesion of
selectins and their ligands under shear stress �1�, which can
be seen from Eq. �37�: the bond with catch characteristics
�kg�0� will alter to the slip case by adjusting the angle to be
smaller than

�0 = arctan��‡/�� . �60�

Because there is structural evidence supporting the existence
of the angle, this explanation may be reasonable. The coef-
ficient D, because we assumed that the conformational fluc-
tuation is always fast at any given force, it does not matter in
fitting the single-molecule data. But the effect of the diffu-
sion coefficient would appear if the forced dissociation ex-
periment was done at lower temperatures or higher solvent
viscosities. An extreme situation is that the viscosity �tem-

perature� is so high �low� that D almost vanishes. The prob-
ability density p�x , t� of Eq. �3� then has an analytical solu-
tion given by

p�x,t� � p�x,0�exp�− tkoff�x, f ��� , �61�

where p�x ,0� is any initial distribution independent of force.
This is a typical example of rate processes with static disor-
der �18�. In addition, the survival probability of the bond
converts into a multiple-exponential decay for a single force
from the single-exponential decay at the large-D limit �the
existing data support the large-D approximation; see Figs.
3�d� and 3�e� in Ref. �3��, the mean lifetime is

�� � � p�x,0�koff
−1�x, f �� , �62�

which means that the catch-slip bond alters into a slip bond
only. Finally, we pointed out at the beginning that the coun-
terintuitive catch-slip bond transition is one example of a rate
process with dynamic disorder. Because this concept has
been deeply studied in theory and experiment during the past
two decades, the extensive experience and knowledge would
be useful for further experimental and theoretical study of
catch-slip bonds.

Although our model has some differences from previous
work, we cannot definitely distinguish which theory or
model is the most reasonable and closest to real situations
with the existing experimental data. Moreover, except for the
coarse-grained physical picture our theory does not reveal
detailed structural information about the catch behavior of
the ligand-receptor complexes, whereas biologists would be
interested in it. Further single-molecule experiments includ-
ing micromanipulation experiments and fluorescence spec-
troscopy, more crystal structure data, and detailed molecular
dynamics simulations from the atomic interactions are essen-
tial to elucidate the real molecular mechanism of the catch
bonds.
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